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Density Matrix and Rate Equation Analyses for Picosecond
Pump/Probe Combustion Diagnostics
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Further developments in picosecond pump/probe combustion diagnostics are described. The rate equation
formalismoriginallyused to model the pump/probe interaction is notentirely appropriatefor a 2-ps interaction. For
that reason, a new nonperturbativedensity matrix model that more exactly describes the pump/probe interaction is
presented. Our goal is to discover how well the pump/probe interaction is described by the rate equations,when the
interaction occurs within the rate equation limits, or to � nd a similarly simple expression. The model is described,
results are presented, and then a comparison between the two formalisms is made.

Nomenclature
A21 = Einstein coef� cient for spontaneous emission, s¡1

D = sample volume focal diameter, m
E.z; t/ = electric � eld, V/m
E.z; t/ = electric � eld vector, V/m
Oez = unit vector in the z direction
f L = laser repetition rate, s¡1

f .u/ du = fraction of atoms in the velocity interval [u; u C du]
gi = degeneracy of level where i is 1 or 2
i =

p
¡1

kB = Boltzmann constant, J/K
k0 = optical wave propagation constant, m¡1

l = beam interaction length, m
m = mass of atom, kg
Ntot = total number density of absorbing species, m¡3

Ppump
av = average power of the pump beam, W

P.z; t/ = material polarization,C m¡2

P.z; t/ = material polarization vector, C m¡2

Qp.z; t/ = complex polarization envelope function, C m¡2

T = translational temperature,K
t = time, s
u = atomic velocity component along the optical

axis Oez , m/s
V = volume, m3

V = interaction Hamiltonian, J
V21; V12 = off-diagonalelements of the interaction

Hamiltonian, J
z = spatial coordinate along the beam path, m
®mod = pump/probe modulation depth
021 = combined spontaneous emission and collisional

de-excitation rates, s¡1

°21 = collisional dephasing rate, s¡1

1º L
1=2 = laser bandwidth, s¡1

1z = difference in pump and probe path lengths, m
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"R ; " I = real and imaginary parts of the complex electric � eld
envelope function, V/m

".z; t/ = electric � eld envelope, V/m
Q".z; t/ = complex electric � eld envelope function, V/m
"0 = permittivity of free space, F/m
¹12; ¹21 = dipole matrix elements, C m
h¹i = expectation value for the dipole moment, C m
º12 = transition frequency, s¡1

½ = density matrix
½11; ½22 = diagonal density matrix elements; probabilities that

the atom is in state 1 or 2
½21; ½12 = off-diagonaldensity matrix elements; coherences

between states 1 and 2
Q¾21 = complex envelope function for the coherence
¾ R

21; ¾ I
21 = real and imaginary parts of the envelope function for

the coherence
¿ = retarded time, s
’.z; t/ = slowly varying optical phase term
!0 = angular frequency of optical wave, s¡1

!12 = transition angular frequency, s¡1

¤ = complex conjugate

Introduction

D URING thepast20 years, laserdiagnosticshaveprovidedcriti-
cal experimentaldata on species number density, temperature,

and velocity in combustion � ow� elds. As discussed in detail by
Eckbreth,1 these techniquesprovide information that cannot be ac-
quired using more conventionalmeans. Each laser diagnostic tech-
nique can be applied only within limited conditions, however, and
numerous tradeoffs are involved. Examples include a reduction in
sensitivity in trade for spatial resolution; a requirement for correc-
tions, calibrations, and simpli� ed models in trade for low detection
limits; an elimination of spatial resolution in trade for an absolute
measurement,free fromcalibrations,corrections,or simpli� cations;
and so on. Unfortunately, not all of the operating conditions of in-
terest to practical combustion are addressed by the current tech-
niques. Therefore, we are developing an entirely new combustion
diagnostic, pump/probe spectroscopy,which has speci� c attributes
not currently available to combustion researchers.These include 1)
absolute determination of number density, without calibrations or
corrections; 2) excellent spatial resolution; 3) insensitivity to the
collisional environment, a diagnostic that works well at high pres-
sures; and 4) a high-speed technique capable of detecting turbulent
� uctuationsand rapid transients.As with other diagnostics,we have
traded away attributes, i.e., low detection limits, to achieve these.
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Much of our research,therefore,focuseson mitigationof limitations
to the pump/probe technique.

In the past, we have demonstrated that picosecond pump/probe
spectroscopy provides an absolute determination of number den-
sity, without calibrations or corrections.2 It is, essentially, a spa-
tially resolved absorption measurement. Even molecules with poor
� uorescence yield can be detected with pump/probe spectroscopy.
Our estimatesof speciesdetectionlimits3 indicate that the technique
will proveuseful for combustionresearch.InRef. 3, for example,we
predicta detection limit for CH around 1012 cm¡3 for the conditions
speci� ed in that paper. We expect that pump/probe measurements
will be insensitive to the collisional environment as well because it
is possible to make the measurement over timescales much smaller
than normal collisional times, and the transform-limitedbandwidth
of a picosecondpulse is signi� cantly broader than single linewidths.
Pressure effects on linewidth, therefore, should not propagate to
the signal. With respect to measurement speed, an easily explained
tradeoff between sensitivity and speed can provide measurement
bandwidths between 500 Hz and 41 MHz (Ref. 3).

Our goal here is to take this diagnostic one step further, by
subjecting the original rate equation expressions for pump/probe
spectroscopy4 to rigorous examination, using a quantum mechan-
ically correct formalism. This is done to discover how well the
pump/probe interaction is described by the rate equations (when
the interaction occurs within the rate equation limits) or to � nd a
similarly simple expression. In what follows we brie� y describe
the pump/probe technique and the rate equation results. We then
present the density matrix formalism and our numerical approach.
Next thebehaviorof a singlepropagatingpulse is describedand then
is compared to rate equation results both within and outside the rate
equationlimits.Finally, thedensitymatrix predictionof pump/probe
modulation is compared to the rate equation prediction, exhibiting
very good agreement within the rate equation limits.

Pump/Probe Spectroscopy
In pump/probe spectroscopy, the output from a continuouswave

(cw) mode-locked laser is tuned to a transition of interest, and the
beam is split into two portions. The pump beam is directed through
a modulator and is crossed with the probe beam in the � ame. This
beam crossing forms a sample volume within the � ame (Fig. 1).
The pump modulation is impressed upon the resonant molecules
in the sample volume because the populations of the ground and
excited state are modi� ed by the presence of the pump beam. These
populations then modulate the probe beam at the intersection via
absorption and stimulated emission, changing the probe irradiance
at the modulation rate. This change in irradiance is de� ned as the
modulation depth, expressed as a fraction of the total probe irradi-
ance. After the � ame, the pump beam reaches a beam stop, and the
probe beam is detected. The detector signal is then synchronously
demodulated using a lock-in ampli� er. The measured probe modu-
lation depth is proportional to the concentration of molecules. For
optically thin conditions, the modulation depth will be at most a
few percent. Nevertheless, for mode-locked lasers,5 the minimum
detectable modulation depth is approximately 10¡8 .

We currently use a Spectra-Physics regeneratively mode-locked
Ti:sapphire laser, equippedwith both 2- and 60-ps optics. This laser
produces about 1.8 W of output when pumped with 8 W from an

Fig. 1 Schematic of single-point pump/probe interaction in the
� ow� eld.

intracavity-doubled,diode-pumped Nd:YVO4 laser, with autocor-
relation pulse widths around 1.4 ps in the 2-ps con� guration. The
transform-limitedbandwidth is about 0.4 nm.

In our experiments, both the pump and probe are in resonance
with the same transition. For a two-level atom, the rate equations
then give a modulation depth described by4
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The modulation resides on a large carrier (typically 104 –107 larger
than the modulatedportionof the signal). Detecting this small signal
is straightforward,and the demodulated signal is related directly to
the number density of absorbers.The other terms in Eq. (1) are usu-
ally known or can be measured. We demonstrated that pump/probe
absorptionspectroscopyprovidesan absolutedeterminationof num-
ber density when this equation was applied to our potassium mea-
surements and then compared to atomic absorption spectroscopy
using a tungsten � lament lamp.2

The model given in Eq. (1) assumes an optically thin analyte,
the linear absorptionregime, a two-level system, a temporal top-hat
pulse pro� le, and a broad laser bandwidth with respect to the ab-
sorption linewidth.The optically thin analyte assumption then leads
to an assumption that the pump pulse is not absorbed as it passes
throughthe medium, leadingto an excitedstate populationthat does
not change with position. The probe pulse is assumed to stimulate
both absorption and emission, whereas the pump pulse stimulates
absorption without stimulating emission. Finally, quenching is as-
sumed negligible.

The rate-equation-based pump/probe model has recently been
extended3 for a molecularpump/probe interactionby accountingfor
numerous ro/vibrational levels, including the individualBoltzmann
fractions, Einstein rate constants for each line, and the overlap be-
tween the laser linewidth and the individual lines pumped by the
laser. It was simply assumed that the interaction could be repre-
sented by a summation over a number of distinct two-level reso-
nances. Further details are provided in Ref. 3.

Density Matrix Model
As stated in the Introduction, we expect that pump/probe mea-

surementswill be insensitiveto the collisionalenvironmentbecause
it is possible to make the measurement in timescales much shorter
than normal collisional times. Our pulsewidths are typically 2 ps
long, and the probe pulse is adjusted to trail the pump pulse by
only a few pulsewidths. These time frames are signi� cantly shorter
than the collision times, coherence lifetimes, and excited-state life-
times of molecules in atmosphericpressure � ames. This necessarily
means that the probe pulse will sample the coherences created by
the pump pulse. As such, it is not accurate to use the rate equations
to describe the pump/probe interaction.

For this reason, we have developeda nonperturbativemodel that
is based on semiclassical theory. It combines the time-dependent
density matrix equations with Maxwell’s equations to describe the
propagation of the pump and probe pulses. Our goal is to discover
how well the rate equation model approximates the pump/probe
interaction, when the model applies, or to � nd a similarly simple
expression. This more exact model can also be used to de� ne the
limits of applicability for the rate equation expressions and then to
explore other sensing possibilities offered by departures from the
rate equation limits.

Density matrix models are commonly used to describe short-
pulse spectroscopic interactions (see, for example, Refs. 6 and 7).
The model describedhere is based on the developmentpresentedby
IcsevgiandLamb.7 It combinesthreeformalismsto self-consistently
describe pulse propagation. First, the density matrix formalism of
quantummechanicsdescribes the microscopic responseof resonant
and near-resonantatoms immersed in the laser � eld. Second, statis-
tical physics describes how the individual atomic responses add up
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to producea net inducedpolarizationon the macroscopic level.This
statistical averaging explicitly accounts for Doppler broadening of
the resonance. Last, from classical electrodynamics,we obtain the
one-dimensional wave equation that describes the propagation of
the laser pulse. Each of these topics will be discussed in three sec-
tions to follow. Prior to that, we will set the stage for those sections
by introducing the formalism used to represent the laser pulses.

Pulse Representation
The pump and probe pulses will be described as plane waves

traveling in the Oez direction with a linear electric � eld polarization
in the Oex direction. The model described here, therefore, does not
assume the crossed-beam geometry shown in Fig. 1 but instead a
collinear geometry. The electric � eld of a pulse can be expressed
as the product of a slowly varying envelope function and a rapidly
varying phase, both of which are functions of the spatial coordinate
z and the time t, with the complex conjugate (c.c.):

E.z; t/ D Oez".z; t/..expf¡i [!0t ¡ k0z C ’.z; t/]g C c:c:// .2/

Both the angular frequency !0 and the propagation constant k0 are
consideredconstants,whereas the slowly varyingphase term ’.z; t/
allows for dispersive effects. With no loss of generality, ’.z; t/ can
be incorporated into the envelope function, resulting in a complex
envelope function with real and imaginary components "R and "I :

E.z; t/ D OezfQ".z; t/ exp[¡i.!0t ¡ k0z/] C c:c:g .3/

This transformationallows us to describe the propagationof a pulse
solely in terms of the propagation of a complex envelope because
the rapidly varying phase term does not change form. We describe
the net induced polarization of the sample in an analogous way:

P.z; t/ D Oezf Qp.z; t/ exp[¡i.!0t ¡ k0z/] C c:c:g .4/

Becausethepumpandprobepulsesareproducedfromthe same laser
byusinga beamsplitter,theirenvelopefunctionshave the same func-
tional form with the same initial phase, but they can have different
magnitudes.Also, when describingboth pulses in the same coordi-
nate system, a spatial transformation must be applied to the probe
pulse. This is because the pump and probe pulses travel through
different pathlengths on their way to the interaction volume. If
the probe pathlength is a distance 1z longer than that of the pump,
the necessary spatial transform is z ! z C 1z. Because the beams
are collinear through the interactionvolume, the superpositionprin-
ciple can be used to describe the total � eld due to both pulses. As-
suming that both pulses have the same electric � eld polarization,
the total electric � eld is equal to the sum of the two � elds, and the
vector notation can be dropped. If the pump and probe pulses are
each expressed as in Eq. (2), the total electric � eld takes the form
of Eq. (3), where the real and imaginary parts of the total envelope
function are given by the following expressions:

"R.z; t/ D "1.z; t/ cos ’ C "2.z C 1z; t/

£ [cos ’ cos k01z C sin ’ sin k01z] (5a)

"I .z; t/ D ¡"1.z; t/ sin ’ C "2.z C 1z; t/

£ [cos ’ sin k01z ¡ sin ’ cos k01z] (5b)

An example of an envelope function used to describe a pump and a
probe pulse in this manner is shown subsequently.

Density Matrix Equations
We use the density matrix formalism to describe the response of

resonant or near-resonantatoms to the electric � eld of a laser pulse.
De� nition of the densitymatrix, discussionof its properties,and the
derivations of the density matrix equations are found in most grad-
uate quantum mechanics textbooks.8 Additionally, we have found
several books that contain useful introductions to this formalism,
with particular emphasis on laser–matter interaction.9 – 11

For the purposes of this study, we will model a resonant atom or
molecule as a closed two-level system. This simpli� cation can be
justi� ed in cases where the resonance is isolated and where transfer

Fig. 2 Energy-level diagram for a closed two-level system, collisional/
radiative deexcitation (with a rate C 21), and collisional broadening
(characterized by the coherence dephasing rate °21).

rates between the resonant energy levels and other energy levels are
negligibleon the timescales consideredby the model. The two-level
system that will be considered is shown in Fig. 2. The combined
spontaneous emission and collisional de-excitation rates are given
by 021 . The collisional dephasing rate °21 accounts for collisional
broadening. Collisional excitation rates are considered negligible.

The density matrix ½ for an atom contains all necessary informa-
tion about this quantum system. For a two-level atom, the diagonal
elements ½11 and ½22 are the probabilities that the atom is in state
1 or 2, respectively. For a closed two-level system, the trace of the
densitymatrix must be equal to one inasmuchas the atom must be in
one state or the other. The off-diagonalelements are the coherences
between the states with the property that ½21 D ½¤

12 .
When a resonant electric � eld is applied to an atom, the interac-

tion Hamiltonian V is introduced into the Schrödinger equation. In
the electric dipole approximation, the off-diagonal elements of the
interaction Hamiltonian are given by

V21.z; t/ D ¡¹21 E.z; t/; V12.z; t/ D ¡¹12 E.z; t/ .6/

In general, the off-diagonal elements are c.c. However, the dipole
matrix elements ¹12 and ¹21 can be made purely real and equal,
with no loss of generality, if the basis vectors describing the energy
eigenstates1 and 2 are judiciously chosen.

The density matrix equations are a set of coupled differential
equations that describe the time evolution of the density matrix ele-
ments in responseto an interactionHamiltonian.With the relaxation
rates de� ned earlier, the density matrix equations for a two-level
system are given by10

@

@t
½11 D 021½22 C

i

h̄
.V21½12 ¡ ½21V12/ (7a)

@

@t
½21 D ¡.i!21 C °21/½21 C

i

h̄
V21.½22 ¡ ½11/ (7b)

When the laser electric � eld is applied, the system responds at the
optical frequency!0 . As such, it stands to reason that the coherence
can be written in terms of the product of a slowly varying complex
envelope and the same rapidly varying phase term, as in Eq. (3):

½21 D Q¾21 exp[¡i.!0t ¡ k0z/] .8/

The envelope function for the coherence has real and imaginary
parts ¾ R

21 and ¾ I
21 , respectively.

When the interaction Hamiltonian is expressed explicitly and
Eq. (8) is substituted into the differential equations (7a) and (7b),
the following two equations result:

@

@t
½11 D 021½22 C

i¹21

h̄
..¡Q" Q¾ ¤

21 C Q"¤ Q¾21

C fQ" Q¾21 exp[¡2i.!0t ¡ k0z/] ¡ c:c:g// (9a)

@

@t
Q¾21 D ¡[i .!21 ¡ !0/ C °21]¾21

¡
i¹21

h̄
.½22 ¡ ½11/fQ" C Q"¤ exp[2i.!0t ¡ k0z/]g (9b)
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Equations (9) have terms that are slowly varying and terms that
oscillate at twice the optical frequency.In the rotatingwave approx-
imation, the rapidly varying terms are neglected.Furthermore, these
equationscan be expressed in terms of the complex and real parts of
the envelope functions for the electric � eld and for the coherences.
This results in three real equations:

@

@t
½11 D 021.1 ¡ ½11/ C 2¹21

h̄
"I ¾ R

21 ¡ "R¾ I
21 (10a)

@

@t
¾ R

21 D ¡°21¾ R
21 C .!21 ¡ !0/¾ I

21 C ¹21

h̄
" I .1 ¡ 2½11/ (10b)

@

@t
¾ I

21 D ¡°21¾
I

21 ¡ .!21 ¡ !0/¾
R

21 ¡ ¹21

h̄
"R .1 ¡ 2½11/ (10c)

Given an initial electric � eld envelope function, Eqs. (10) can be
directly integrated to produce the time evolution of the coherence
at a position z. The coherence is then used to calculate the atomic
response, given by the expectation value of the atomic dipole mo-
ment. Using the formalism of quantum mechanics, the expectation
value of any operator is given by the trace of the matrix resulting
from the density matrix acting on the operator. For the dipole mo-
ment operator, which has nonzero elements only off diagonal, the
expectation value is simply

h¹i D ½12¹21 C ½21¹12 D ¹21f Q¾21 exp[¡i.!0t ¡ k0z/] C c:c:g

.11/

Statistical Averaging
The net inducedpolarizationis a macroscopicpropertythat results

from the sum of the microscopic responses of individual atoms,
given by Eq. (11). The macroscopic polarization in a volume V is
the volume average of the atomic dipole moments of all M atoms
in V :

P.z; t/ D 1
V

M

i D 1

h¹ii .12/

The atomic dipole moments in this problem can be parameterized
by the atomic velocitycomponentu along the optical axis Oez . Atoms
traveling with differentvelocities along that axis will respond to the
laser excitationat optical frequenciesthat are Doppler shifted.With
this in mind, we introduce a more explicit notation that emphasizes
this parameterization.A partial polarization P.z; tI u/ is de� ned as
the time-dependent expectation value of the dipole moment of an
atom at position z with a velocity component u:

P.z; tI u/ D h¹.z; tI u/i .13/

The summation in Eq. (12) is treated in statistical physics by in-
troductionof the velocitydistributionfunction.For this analysis,we
consider a steady-state and spatially uniform Maxwellian velocity
distribution,which is only a function of the velocity component u.
In this case, the probability that an atom has a velocity component
u in the interval [u; u C du] is given by

f .u/ du D
m

2¼kB T

1
2

exp ¡
mu2

2kB T
du .14/

Using this distribution function, Eq. (12) becomes the following
integral:

P.z; t/ D Ntot

C1

¡1
P.z; tI u/ f .u/ du .15/

The partial polarization can be written in terms of the coherence
envelope function. In the notation of Eq. (4), the envelope function
for the net polarization is

Qp.z; t/ D Ntot¹21

C1

¡1
Q¾21.z; tI u/ f .u/ du .16/

One-Dimensional Wave Equation
The one-dimensional wave equation is derived from Maxwell’s

equations, and it has the following form in SI units (to switch to
Gaussian units, simply replace 1="0 with 4¼ ):

@2

@z2
¡ 1

c2

@2

@t 2
E.z; t/ D 1

"0c2

@ 2

@t2
P.z; t/ .17/

It is desirable to reduce the second-order wave equation to a
� rst-order differential equation. This reduction is possible using an
important approximation and a small bit of algebra. First, Eqs. (3)
and (4) are substituted into the wave equation. Next, invoking the
slowly varying envelope approximation, second-order derivatives
of the slowly varying functions ".z; t/ and p.z; t/ are neglected.
Furthermore, time derivatives of p.z; t/ can also be ignored with
respect to the other terms in the equation. Finally, writing the wave
equation in terms of the real and imaginary parts of the envelope
functions, the following two real differential equations result from
grouping terms that are in phase and in quadrature with the optical
phase:

@

@z
C 1

c

@

@t
"R .z; t/ D ¡

k0

2"0
p I .z; t/ (18a)

@

@z
C 1

c
@

@ t
"I .z; t/ D

k0

2"0
pR .z; t/ (18b)

A further simpli� cation results by invoking the retarded time trans-
formation t ! ¿ D t ¡ z=c. This change of variables transforms the
wave equations from partial differential equations to two ordinary
differential equations that can be directly numerically integrated:

@

@z
"R.z; ¿/ D ¡

k0

2"0

p I .z; ¿/ (19a)

@

@z
" I .z; ¿ / D

k0

2"0
pR.z; ¿ / (19b)

Pump/Probe Model
The � ve differential equations describing this system are given

in Eqs. (10) and (19). These equations are repeated using explicit
notation for the dependenciesof the variables:

@

@¿
½11.z; ¿ I u/ D 021[1 ¡ ½11.z; ¿ I u/]

C 2¹21

h̄
" I .z; ¿ /¾ R

21.z; ¿ I u/ ¡ "R.z; ¿ /¾ I
21.z; ¿ I u/ (20a)

@

@¿
¾ R

21.z; ¿ I u/ D ¡°21¾
R

21.z; ¿ I u/ C [!21 ¡ !.u/]¾ I
21.z; ¿ I u/

C ¹21

h̄
" I .z; ¿/[1 ¡ 2½11.z; ¿ I u/] (20b)

@

@¿
¾ I

21.z; ¿ I u/ D ¡°21¾
I

21.z; ¿ I u/ ¡ [!21 ¡ !.u/]¾ R
21.z; ¿ I u/

¡
¹21

h̄
"R.z; ¿ /[1 ¡ 2½11.z; ¿ I u/] (20c)

@

@z
"R.z; ¿/ D ¡

k0

2"0

p I .z; ¿ / (20d)

@

@z
" I .z; ¿ / D

k0

2"0
pR.z; ¿ / (20e)

The � rst three differential equations describe the time evolution
of the density matrix at a particular spatial location for an atom
with a particularvelocity component.The atoms addressedby these
equationswill seea Doppler-shiftedlaser frequency,and as such, the
apparent laser frequency ! is shown to have velocity dependence.
The Doppler-shifted frequency is

!.u/ D !0 ¡ k0u .21/
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The last two differential equations relate the spatial gradient of the
electric � eld to the induced polarization. The induced polarization
envelope functions are directly related to the coherence envelope
functions as follows:

pR.z; ¿ / D Ntot¹21
m

2¼kB T

1
2

£
C1

¡1
¾ R

21.z; ¿ I u/ exp ¡
mu2

2kB T
du (22a)

p I .z; ¿/ D Ntot¹21
m

2¼kB T

1
2

£
C1

¡1
¾ I

21.z; ¿ I u/ exp ¡
mu2

2kB T
du (22b)

These equations are solved numerically across a spatial and tem-
poral grid, to give populationsin the upper and lower quantumstates
togetherwith the atomic coherences.These are then used to provide
the macroscopic polarization as a function of space and time. The
input � eld envelope is de� ned such that it includes both the pump
and probe pulses, and the model calculates the attenuation/gain of
the envelope as the pulses propagate through the sample volume.
The pump pulse, thus, preparesa seriesof states that are then sensed
by the probe pulse as it propagates along the same centerline. The
modulationdepth can then be inferred from the change in irradiance
of the probe pulse.

Integrationof the densitymatrix equationswas performedusinga
Burlirsch–Stoer extrapolationtechnique.12 When required, the inte-
grals in Eqs. (22) are solved using Gauss–Hermite quadrature,with
the necessary routines also coming from Ref. 12. Equations (20d)
and (20e) are solved using a simple one-step predictor–corrector
method, which is started with a single forward Euler step at z D 0. A
detailed description of the numerical scheme is provided in Ref. 3.

We con� rmed that the time integrationof the densitymatrix equa-
tions was correct by comparing simulation results to steady-state
analytical solutions. To do this, a constant electric � eld was turned
on at time zero, and the integrator marched forward in time until
the population and coherences reached steady-state values. These
numerical results were then compared to the analyticalexpressions.
Using a rangeof very weak to stronglysaturatingelectric � elds,both
collision-freeand strongly quenchingenvironments, and a range of
laser wavelengths covering � ve times the full width at half maxi-
mum (FWHM) of the absorption linewidth, we achieved excellent
agreement with the analytical solutions. In all cases, the real and
imaginary susceptibilitieswere within §0:1% of the analyticalval-
ues, and the resulting excited state population was within §0:01%.

Performanceof the pulse energy integration,used to calculate the
integratedattenuationat each z position, was evaluated by invoking
an energy balance. The number of excited atoms was calculated on
each position interval,and this was compared to the number of pho-
tons absorbed on the same interval.Conservationof energy dictates
that these two numbers are the same in the absence of relaxation
phenomena. Over a wide range of pulse energies, these two agreed
to within a fraction of a percent.

A grid re� nement study was employed to investigate numerical
accuracyassociatedwith the calculationof modulationdepth. It was
found that the simulation resultsconvergedwith a spread of approx-
imately§2% as the positiongrid spacingwas successivelyreduced.
We reduced the spacing to the point that truncation errors started to
prevail and, as such, identi� ed suitable limits for the spatial grid.

Density Matrix Model Results
We now present some model results for pulse propagation in

pump/probe experiments using potassium. We are focusing on
potassiumbecausewe wish to performdetailedexperimentalvalida-
tion of model results. Potassium has several advantagesthat make it
ideal for this characterization.It has two well-known,strongground-
state transitions in the fundamental tuning range of Ti:sapphire.
These lines are suf� ciently spaced that a two-level interaction is
appropriate.Therefore, we can be certain that our model accurately
describes the physical interaction. All subsequent simulations use

2-ps pulses and parameters typical of the experimental conditions
that follow.

Experimental Parameters
The experimentswill employ the Spectra-Physics regeneratively

mode-locked Ti:sapphire laser system described earlier. The beam
diameter is approximately100 ¹m at the sample volume. Assuming
a sech2 intensitypro� le and 1.85-Waveragepower, the electric � eld
magnitude at the sample is approximately 1:5 £ 107 V/m for the
2-ps pulses. The transform-limited spectral FWHM of a 2-ps pulse
is 1!2ps D 0:99 ps¡1 .

The laser will be tuned to the 42S1=2– 42P1=2 transition of atomic
potassiumat 769.9 nm. Although both the ground and excited states
are twofolddegenerate,we can still treat the resonanceas a two-level
system becausethe laser pulsesare linearlypolarized.13 In this case,
the two degenerate ground states are coupled to the two degenerate
excited states through two equivalent ¼ transitions. In this con� g-
uration, there can be no coherences formed between the degener-
ate states in either the ground or excited states. The spontaneous
emission coef� cient for the 42S1=2 – 42P1=2 transition14 is approxi-
mately 0:382 £ 108 s¡1. This value corresponds to a dipole moment
of 2:5 £ 10¡29 C ¢ m. Fiechtnerand Linne2 probed the 42S1=2 – 42P3=2

transition(766.5nm) in prior pump/probeexperiments.For the con-
ditions of their experiments, it was determined to avoid saturation;
the pump and probe beam powers had to be kept below 4 mW (49 pJ
per pulse) and 5 mW (61 pJ/pulse), respectively.15

Two sources of potassium will be used in experiments. A low-
pressure atomic vapor cell will be used initially to provide well-
characterizednumberdensities.This cell has fourwindows arranged
in a tee, so that we can perform spectrally resolved absorption
measurements simultaneously with pump/probe determinations.A
Winefordner-styleaspiratingburner can also be used to seed potas-
sium into an atmospheric methane/air � ame. This device was used
to provide parameters for the model to simulate a combustion di-
agnostic more closely. We assume an equilibrium temperature of
approximately2000K, which correspondsto a FWHM of the potas-
sium velocity distribution of 922 m/s. The corresponding Doppler
broadening of the atomic line is 1!Doppler D 7:5 £ 10¡3 ps¡1 .

For simulations involving2-ps pulses, the temporaldiscretization
is typically set to 0.04 ps so that 50 grid points span the intensity
FWHM. The spatial discretization is chosen so that the difference
between the predictor and corrector steps is kept within a 0.2%
tolerance. When Doppler broadening is explicitly included in the
simulations, 19 velocity groups are used in the integration.

Initial Conditions
We assume that when unperturbed, all atoms are in the ground

state. Furthermore, the coherences must be zero when no coherent
excitation is present. We further assume that the mode-locked laser
pulses are described by hyperbolic secant envelope functions. The
envelope function for the pump has a magnitude "1, and it peaks
at ¿ D ¿1 . The probe envelope has a magnitude "2 , and it peaks at
¿ D ¿2. The pulses are spatially separated by 1z D c.¿2 ¡ ¿1/. Each
pulse has the same intensity FWHM, which is denoted 1¿FWHM.
Using Eq. (5), the electric � eld envelope is speci� ed at z D 0 by the
following two functions:

"R.0; ¿ / D "1 sec h
¡2 ln.

p
2 ¡ 1/

1¿FWHM
.¿ ¡ ¿1/ cos’

C "2 sec h
¡2 ln.

p
2 ¡ 1/

1¿FWHM
.¿ ¡ ¿2/

£ [cos ’ cos k01z C sin’ sin k01z] (23a)

"I .0; ¿ / D ¡"1 sec h
¡2 ln.

p
2 ¡ 1/

1¿FWHM
.¿ ¡ ¿1/ sin ’

C "2 sec h
¡2 ln.

p
2 ¡ 1/

1¿FWHM
.¿ ¡ ¿2/

£ [cos ’ sin k01z ¡ sin ’ cosk01z] (23b)
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Fig. 3 Example of the electric � eld envelope for z = 0: a) square of the magnitude of the envelope function, b) real part of the complex envelope
function, and c) imaginary part of the envelope function.

Figure 3a shows the modulus squared for a pump/probe enve-
lope. In this example, the phase is set so that the pump envelope is
purely real at z D 0 [’.0; ¿/ D 0 in Eq. (2)]. The probe irradiance is
10% of the pump irradiance. The peak of the pump pulse occurs at
¿1 D 51¿FWHM, and the probe pulse peaks at ¿2 D ¿1 C 101¿FWHM.

For the numerical integration, it is important to truncate the en-
velope functions, so that the laser electric � eld is always zero for
¿ · 0. A further restriction is placed on the functions to distinctly
separate the pump and probepulses.This is accomplishedby setting
the electric � eld for each pulse to zero for j¿ ¡ ¿peak j > 4:51¿FWHM.
We have evaluated this approach three ways: by truncating with a
step, by truncating with a linear ramp, and by allowing one pulse
to propagate much further without truncation and without the sec-
ond pulse. No matter how the tail of the pump pulse is dealt with,
the coherences created by the pulse itself impose their lifetime on
the populations. Calculations indicate that the second probe pulse
encounters populations that are identical, no matter how the pump
pulse is truncated.

Figures 3b and 3c show the real and imaginary parts of the enve-
lope function as determined from Eq. (23). When considered inde-
pendently, the pump and probe pulses were taken to be purely real.
However, when the envelope function for both pulses is calculated,
the imaginary part is nonzero due to the phase k01z introduced by
the pump–probe delay.

Note that very slight changes in 1z, on the order of a fraction of
an optical wavelength, can dramatically change the envelope func-
tion. For example, if 1z is set so that the envelope is purely real,
coherencesdue to thepump pulse are exactly in phasewith the probe
pulse. If 1z is then shifted one-half of an optical wavelength, the
pump and probe are exactly out of phase. Shifts of this magnitude
will most de� nitelyoccur in an experiment.To calculatemodulation
depth, therefore, we average the modulation in probe energy over
all of the possible phase shifts.

Doppler Effects
The model includes Doppler effects by averaging atomic re-

sponses over a Maxwellian distribution. However, for potassium,
under atmospheric � ame conditions,Doppler broadeningis negligi-
ble with respect to the spectralbandwidthof a 2-ps pulse.At 2000K,

the Doppler width for potassium is two orders of magnitude smaller
than the laser spectral bandwidth.Therefore, atomic responses vary
little for velocitygroupswithin the Maxwellian distribution,and the
average atomic response turns out to be the response that is calcu-
lated for stationary atoms. Therefore, the remaining simulations do
not carry out the statistical average explicitly.

Single-Pulse Propagation
The circles in Fig. 4 indicate actual simulation results and show

theexcitedstatepopulationat¿ D ¿peak C 4:51¿FWHM extractedfrom
the density matrix model (DM) that results after a single-pulse in-
teraction. Note that connecting lines are only included to aid vi-
sualization and are not simulation data. Also shown in Fig. 4 are
two rate equation (RE) results. The curve labeled linear RE uses
the same linearization that appears in the development of Eq. (1),
that stimulated absorption of the pump pulse is included but stim-
ulated emission is not. The curve labeled simply RE includes both
stimulated absorptionand emission by the pump pulse. Both RE re-
sults assume a temporal top-hat pro� le. For this speci� c simulation,
collisions were neglected by appropriately setting the excited state
and coherencelifetimes.As such, relaxationeffectswere negligible.
This allowed a fair comparison between the simulation results and
the RE results, which included no relaxation terms.

Initially, the DM excited state population scales linearly with
pulse energy, consistent with the REs. For pulse energies less than
60 pJ (5-mW cw), the error introduced by using the linear RE is
less than 5.6%, and for pulse energies less than 120 pJ (10-mW
cw), the error is less than 11%. In this weak pulse limit, the linear
RE always overpredicts the population. These errors become even
larger when collisional effects are included in the DM model. Fur-
thermore, the linearized RE pump/probe model [Eq. (1)] assumes
that this population is constant throughout the sample volume. In
fact, the pump pulse is attenuatedand, therefore, even smaller pop-
ulations result as the pulse propagates through the sample. As such,
the approximationsused to describe the pump interaction in the lin-
earized RE pump/probe model always overpredict the excited state
population.

The RE model predicts steady-state saturation when stimulated
emission and stimulated absorption are balanced. This limit is
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Fig. 4 Excited state population of potassium vs pulse energy.

Fig. 5 Time history of the pulse irradiance "¤ ", the excited state population½22, and the pulse gain, shown for a 4-nJ pulse after propagatingthrough
2 mm of potassium at 1011 cm ¡ 3 .

approached as the laser irradiance is increased, and in this limit,
a two-level system has equal population in each state. However, the
DM-based model shows that as the pulse energy increases to 1 nJ,
the excited state population does not saturate at a value of 0.5. In-
stead, as indicated by point a in Fig. 4, almost all of the population
is in the excited state. If the pulse energy is increased still further,
the population is stimulated back toward the ground state. At point
b, at 4 nJ (325-mW cw), almost all of the population is back in the
ground state. The excited state population and the laser attenuation
for a pulse with energy at point b of Fig. 4 are both plotted as a
function of time in Fig. 5. Because little collisional relaxation oc-
curs on these short timescales, conservationof energy dictates that
that this pulse sees very little integratedattenuation.This is shown in
Fig. 5, where the � rst half of the pulse is attenuated and the second
half experiences gain. The time-integrated gain is approximately
zero. This behavior has been extensivelystudied and is termed self-
inducedtransparency.McCall and Hahn16 wrote the de� nitive paper
on this subject in 1969.

An interestingphenomenonoccurs for pulseswith energy greater
than that corresponding to point a in Fig. 4. In these cases, the
population � ops back and forth during the pulse. If the electric � eld
of the pulse is constant, theseoscillationsoccur at a � xed frequency,
the Rabi frequency ÄRabi. In general,the Rabi frequency is time
dependent and is related to the electric � eld envelope by

ÄRabi D ¹21".t/

h̄
.24/

Figure 6 shows the Rabi oscillationcorrespondingto the maximum
pulse we can produce with our unampli� ed Ti:sapphire laser. The
pulse energy is 22.6 nJ (1.85-W cw). The net result is an excited
state population of 0.86, the same result produced by 0.6-, 1.5-,
7.5-, and 10.4-nJ pulses. Although this phenomenon is interesting,
for our purposes it is undesirableto operate in this regime. The state
of the atomic population following a pulse that induces Rabi oscil-
lations is highlysensitive to pulse shape,height, and duration.Laser
� uctuations can result in very unpredictablebehavior, which makes
correct characterizationof the pump/probe experiment impossible.

Pump/Probe Spectroscopy: Comparison Between the RE
and DM Formalisms

The earlier results, shown in Fig. 4, suggest that the potassium
pump/probe signal will most likely be linear when pulse energies
are less than 0.1 nJ. The models were exercised, therefore, in this
region. A probe pulse energy of 1.2 pJ (100-¹W cw) was used
in the following cases, and we varied the pump energies from 6.1
to 122 pJ. We have simulation results for these pump and probe
energies, while varying the product of the total number density and
the interaction length (Ntotl ) from 2 £ 109 to 2 £ 1012 mm cm¡3.
Currently, truncation errors prevent us from obtaining results with
Ntotl < 2 £ 109 mm cm¡3. This issue will be addressed in a future
version of the code.

Figure 7 compares modulation depth predicted by the linearized
RE model (circles) and the DM simulation (lines) for � ve pump
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Fig. 6 Time history of the pulse irradiance " ¤ ", the excited state population ½22, and the pulse gain, for a 22.6-nJ pulse after propagating through 2
mm of potassium at 1011 cm ¡ 3 .

Fig. 7 Predicted modulation depth vs Ntot l, for various pump pulse energies.

pulse energies. The pump energies are noted on the right-hand side
of the graph. To give the two models an equal footing, collisional
effects were neglected in the DM calculations, so that relaxation
phenomena are negligible over the pump/probe interaction. One
can observe immediately that the agreement between the two is
encouraging.

For pump energies less than or equal to 61 pJ (5-mW cw), the two
models agree to within 10%. As the pump energy is increased to ob-
tain largersignals,however,theerrorgets largerand ison theorderof
15% for a 122-pJ (10-mW) pump. Furthermore, the error increases
with Ntotl. This effect is due to both pump attenuationand coherence
effects. The linear RE model addressesneither of these phenomena.

When collisional effects characteristic of the � ame environment
are used, the RE model becomes a slightlyworse estimate. The DM
simulationwas used to calculate the modulationdepth for relaxation
timesof 100ps, 200ps, 1 ns,andfor thecollision-freecase.The mod-
ulationdepthfor a 24-pJpumpanda 1.2-pJprobeare shownfor these
relaxation times in the top half of Fig. 8. The RE-based prediction
is shown as circles. The errors between the DM and the RE results
are plotted for the four values of relaxation times in the bottom half
of the graph. There is essentially no difference between the results
for the relaxation time of 1-ns and collision-freecase. Furthermore,
there is only a 5% difference between the modulation depth for the
relaxation time equal to 100 ps and the modulation depth for the
collision-free case. These simulations support our claim that this
technique can be effectively used in collisional environments.

These results then set the limits within which RE expressionscan
be applied, while maintaining reasonableuncertainties.More exact
DM models can certainlybe applied to experimentalmeasurements
to improve accuracy, but the simplicity of the RE results is com-
pelling. An outcome as simple as Eq. (1) is likely to have broader
application than a numerical solution to the DM equations.

One could reasonablyask whether it might be possible to achieve
even better agreement between the REs and the DM model. Three
basic approximationsare made in the RE model. The � rst is a tem-
poral top-hatpro� le. The REs predict the same resultswith a top-hat
pro� le as they do a sech2 pro� le, consistent with the expectations
of Fiechtner et al.4 The second is an assumption that the interaction
is optically thin, which removes spatial dependence (z axis) from
the model. In this assumption, the pump pulse irradiance together
with state populations following the pump pulse are both invari-
ant with z. The DM equations predict spatially varying populations
and pump pulse attenuation with z, in disagreement with the RE
result. Finally, high pump pulse energy produces larger signals, but
in this regime the pump pulse stimulates emission. This effect is
also not accounted for in the RE model. Given these facts, it seems
that the RE model could be made more accurate by including stim-
ulated emission in the pump portion of the model and integrating
the rate equations along z, thus allowing for spatial changes in the
pump-prepared populations. Whereas this would make it impossi-
ble to apply a simple equation such as Eq. (1), integration of the
REs along z is straightforwardand should not impair applicationof
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Fig. 8 Predicted modulation depth vs Ntotl (upper set of curves) and errors between the linear RE and DM results (lower set of curves) for various
relaxation times (1/ C 21 and 1/°21).

the diagnostic.These hypotheseswill be tested as we examine both
models during potassium-basedexperimentation.

Conclusions
This paper presents a basic discussion of the RE and DM mod-

els that we are currently developing to study pulse propagation in
pump/probe experiments.The nonperturbativeDM model does not
use any simplifying assumptions with regard to pulse intensities
and treats the atomic responsewith a quantummechanicallycorrect
formalism. This model has been developed in an attempt to either
validate the RE-based model or to identify a similar kind of rela-
tionship. Furthermore, the model can be used to maximize signal
while staying within the experimental limits of applicability of this
relationship.

Simulation results were presented to demonstrate qualitative be-
havior as a function of both pump pulse energy and total number
density. Experimental parameters for a potassium pump/probe ex-
perimentwere used, and the simulationsdemonstratedlinear behav-
ior in the weak interaction limit. Our results have indicated that if
pump/probe experiments are conducted within well-de� ned limits
to laser powerand opticaldepth, the simple RE approachcan beused
with errors ·15%. Suggestions are made for improvement of this
result. A departure from linearity was observed as the interaction
strengthwas increased.When the laser pulsesare suf� cientlystrong
to cause Rabi oscillations in the atomic populations, it is no longer
possible to characterize the experiment with simple expressions.

The atomicresponseof a gaseoussystemto a resonantpicosecond
pulse is always a transient one, which cannot be represented by
the RE formalism. However, we have shown that the integrated
response for a two-level resonance is well represented by the REs
forvery weak interactions.As a roughruleof thumb, this conditionis
typically met when both the integratedabsorptionand the perturbed
population are less than 1%.

In the future,we will performdetailedexperimentsin a potassium
cell and an aspirating burner seeded with potassium to verify these
� ndings. These experiments will include a line-of-sight atomic ab-
sorption measurement that will be used as the known concentration
determination.Pump/probemodulationdepthswill bemeasuredand
used in various formulationsof the RE model and in the DM model
to verify our � ndings. The range of applicability for the REs and
departures from RE behavior will also be explored.
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